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b MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

a r t i c l e i n f o
Article history:
Received 4 August 2009
Received in revised form 21 October 2009
Accepted 25 October 2009
Available online 1 November 2009

MSC:
65M06
65Z05

Keywords:
FCT
Flux-corrected remapping
ALE
0021-9991/$ - see front matter Published by Elsevie
doi:10.1016/j.jcp.2009.10.039

* Corresponding author.
E-mail addresses: liska@siduri.fjfi.cvut.cz (R.

(B. Wendroff).
a b s t r a c t
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ping) of mass and momentum for arbitrary Lagrangian–Eulerian hydro methods is
described. Fluxes of conserved variables – mass and momentum – are limited in a synchro-
nous way to preserve local bounds of primitive variables – density and velocity.

Published by Elsevier Inc.
1. Introduction and background

In numerical simulations of fluid flow, the choice of the computational grid is crucial. Traditionally, there have been two
viewpoints, utilizing the Lagrangian or the Eulerian framework, each with its own advantages and disadvantages. In a pio-
neering paper [8], Hirt et al. developed the formalism for a grid whose motion could be determined as an independent degree
of freedom, and showed that this general framework could be used to combine the best properties of Lagrangian and Eule-
rian methods. This class of methods has been termed Arbitrary Lagrangian–Eulerian or ALE. Many authors have described
ALE strategies to optimize accuracy, robustness, or computational efficiency, see for example [2,3,21,10,11,24,17].

In this paper we consider only ”standard” ALE methods when connectivity of the mesh does not change during the
calculation.

The ALE scheme can be formulated as a single algorithm [7] based on solving the equations in a moving coordinate frame.
However it is more usual to split it into three separate phases. These are: (1) a Lagrangian phase in which the solution and
grid are updated; (2) a rezoning phase in which the nodes of the computational grid are moved to a more optimal position;
and (3) a remapping phase in which the Lagrangian solution is conservatively interpolated onto the rezoned grid.
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It is possible to use the ALE formalism to run in a mainly Lagrangian mode, with an occasional rezone/remap whenever
the grid becomes too distorted. However, it is generally more effective to rezone and remap on each cycle, a strategy termed
continuous rezoning. One advantage of continuous rezone is that the individual grid movements can be constrained to be
small, allowing the use of a local remapper where mass, momentum and total energy (conserved quantities) are only ex-
changed between neighboring cells.

In this paper we will consider a situation when all conserved quantities in the remapping phase are defined at cell centers
(which is the case for cell-centered methods such as Godunov [19,20,18], or staggered methods where subcells formalism is
used as a tool for remap [16]).

We will consider remap of mass (density) and momentum (velocity). Mass and momentum are conservative variables,
density and velocity are primitive variables. The density in a rezoned cell is defined as the ratio of remapped mass and vol-
ume of the rezoned cell; and velocity in the rezoned cell is defined as the ratio of remapped momentum and remapped mass.

Three main properties of remapping are: conservation (in our case conservation of total mass and total momentum),
accuracy and bounds preservation of primitive variables density and velocity.

For the case of cell-centered conserved quantities and continuous rezone strategy, the exchange of conserved quantities
between neighboring cells can be formulated in flux form (see, for example, [23]). The flux form of remapping guarantees
both local and global conservation.

Because we use a continuous rezone strategy it implies that a rezoned cell is contained in the union of its Lagrangian pro-
totype and its neighbors. Therefore it is natural to require that the value of remapped quantity in a rezoned cell is bounded
by the maximum and minimum values on corresponding Lagrangian cells.

Physically motivated bounds are imposed on primitive variables density and velocity, rather than on conserved quanti-
ties. Because remapped velocity is defined as the ratio of remapped momentum and remapped mass, accuracy and bound
preservation property of the velocity depends on both remapped quantities. In other words remapping of mass and momen-
tum has to be considered as coupled process, and therefore remapping of mass and momentum has to be synchronized (see,
[25] – a paper which in some sense inspired our work). Using terminology introduced in [25] we will call fluxes of mass and
momentum compatible if they guarantee bounds preservation for primitive variables.

The task of finding compatible fluxes can be considered as a constrained global optimization problem: an objective func-
tion related to some notion of accuracy and bounds preservation defines constraints.

Clearly the solution of a global optimization problem is not practical. The main goal of this paper is to show how using
ideas inspired by Flux-Corrected Transport (FCT) method [4,30,14,25] we can replace the global optimization problem by a
series of local problems.

FCT type methods are usually considered in the framework of solution of advection or system of hyperbolic partial dif-
ferential equations, [14,15,1]. To the best of our knowledge the only attempt to directly use FCT ideas in remapping context
is done in [28]. For this reason we will give a brief overview of relevant FCT ideas and references and then describe specific
remapping related issues.

According to the Preface of the book [14] (which can be considered as the most comprehensive description of current
state of flux-corrected methods) the FCT idea ‘‘. . . was to locally replace formal truncation error considerations with conser-
vative monotonicity enforcement in those places in the flow where formal truncation error had lost its meaning, i.e. where
the solution was not smooth and where formally high-order methods would violate physically-motivated upper and lower
bounds on the solution.” Technically monotonicity enforcement is achieved by combining low-order fluxes (which guarantee
bound preservation) with high-order fluxes in such a way that resulting fluxes guarantee preservation of bounds and at the
same time are as close as possible to high-order fluxes (low-order and high-order refers here to formal order of accuracy on
smooth solutions). This logic usually applies to solution of one partial differential equation (PDE), e.g. the scalar advection
equation. However, even for one equation it is not clear a priori why closeness of the fluxes to formally high-order fluxes
gives better accuracy, because accuracy depends not only on how close fluxes are to formally high-order fluxes but also
how consistent are fluxes contributing to change of particular quantity in the cell. Inconsistency in the fluxes can manifest
itself in artificial steepening of the solution [14, p. 149], or other anomalies.

A more general approach will be again to consider a global constrained optimization problem. Moreover, even for one equa-
tion one of the main problems is to define ‘‘physically-motivated upper and lower bounds on the solution” because the solution
is unknown (see [14] for relevant discussion). Our opinion is that the FCT approach is a process of replacing a global constrained
optimization problem by series of local constrained optimization problems by considering the worst case scenario. By doing this
one does not perform global optimization, but still is able to find fluxes which give a more accurate solution than the low-order
fluxes, and which guarantee bounds preservation. Such solution of local problems is clearly a more practical approach, and also
from the physical point of view one can say that causality principle is not violated. For one PDE the sufficient local condition
which guarantees bound preservation is practically unique and based on separation of positive (in) and negative (out) fluxes.
Then for upper bound the worst case scenario is if all negative limited andiffusive fluxes will be zeroed out by the limiter, and
for lower bound the worst case scenario is if all positive limited antidiffusive fluxes are zeroed out by the limiter. For systems of
PDEs there are no unique sufficient conditions and therefore one can construct several sets of compatible fluxes. Therefore un-
der the assumption that the notions of local accuracy and bounds are the same, methods of construction compatible fluxes will
differ only in what sufficient conditions on flux limiting (correction) are used.

As it has been mentioned in [14, p.150] ‘‘. . . in the attempt to extend the limiting process to systems of PDEs no imme-
diately obvious or natural limiting procedure becomes apparent.” On p. 218 of the same book the authors have mentioned
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that ‘‘Despite the remarkable progress made in the development of high-resolution schemes for scalar conservation laws,
their extension to hyperbolic systems remains a challenging open problem.” We want to add to this statement that the ques-
tion how accuracy depends on fluxes for system of PDEs is not obvious at all.

According to [14] there are several approaches to deal with systems of PDEs. Two approaches most often used in practice
are: independent treatment of each equation as in operator-split FCT and use of the same limiter for all equations. Neither of
these approaches guarantees bound preservation for primitive variables. In book [14] some abstract scheme for limiting any
set of variables is presented (p. 151 and p. 223), however, as it has been mentioned on p. 224 – ‘‘At present, there is still a
large degree of empiricism in the construction of synchronized FCT limiters, and their performance is strongly problem-
dependent.” Therefore development of new FCT-based methods for systems of PDEs or similar problems (in our case simul-
taneous flux-based remapping of mass/density, momentum/velocity) is a very important area of the research.

Only a few papers have dealt with construction of compatible fluxes for systems of equations. In [26] the author con-
siders the advection of passive scalars as well as equation of fluid density (continuity equation). There is assumption that at
the stage of constructing a limiter for passive scalar the mass flux is already given. In general, we will call an approach
sequential when mass flux is considered given when constructing fluxes for other quantities. In the sequential approach
bounds on passive scalar (or other quantity) do not affect the limiting process for density. Let us also note that in [26]
the author also considers a special form of flux for a passive scalar which is taken in the form of known mass flux multi-
plied by some value of the passive scalar. Such form of the flux for a passive scalar allows the construction of a compatible
flux. In paper [6] authors consider an extension of ideas presented in [26] to the case of unstructured meshes. In paper [25],
authors consider simultaneous advection of density-like dependent variables (for instance, densities of mass and momen-
ta). In this paper, no assumption of a special form of the flux for momenta is made, and the limiting of transportive fluxes
on the primary variables is derived from analytic constraints implied by the Lagrangian form of the governing continuity
equations, which are imposed on the specific mixing ratios of variables (e.g. velocity components). This makes the deriva-
tion in [25] almost directly applicable to remapping. In the approach developed in [25], bounds on velocity components
affect the limiting process for density. Following [25], we will call such compatible fluxes synchronized fluxes and the class
of methods where bounds on one variable affect the limiting process for another variable will be called synchronous. One
may hope that the synchronous approach can give overall less restrictive constraints on the fluxes than the sequential
approach.

Now let us return to the topic of our paper – construction of compatible fluxes for remapping of mass/density and
momentum/velocity, and draw some analogy with FCT methods for PDEs. To distinguish from FCT we will call our method
flux-corrected remapping – FCR. First of all, as we have mentioned before, bounds for primitive variables(density and veloc-
ity) are well defined and are determined from corresponding values on Lagrangian mesh. Second, fluxes are usually com-
puted from reconstruction of the function on Lagrangian mesh, where the function is given by its mean values. Fluxes are
just approximation of some integrals of reconstructed functions over the pieces of intersections of Lagrangian and rezoned
mesh. Usually low-order fluxes correspond to piecewise constant reconstruction and high-order fluxes correspond to piece-
wise linear reconstruction. Finally, the accuracy of remapped quantities also can be estimated from values on the Lagrangian
mesh because the remapped discrete function is a representation of the same underlying unknown function on the new
mesh.

We have introduced a new local measure of accuracy which is derived from the L1 norm of the error for density and veloc-
ity. For each edge (face) where the flux is defined it reduces to linear function which coefficients depend on values of the
density and velocity on old mesh and on low- and high-order fluxes. We also developed new local sufficient condition which
guarantees bound preservation. Because we know only one truly synchronous method for systems, that is the method sug-
gested in [25], we use this method as base line to compare with our new method. Let us consider the plane defined by lim-
iters (correction factors) for density and momentum flux. The feasible set (that is part of the plane where any point
corresponding to a pair of limiters guarantees bound preservation) for method from [25] is a rectangle and for our new meth-
od the feasible set is a convex polygon. In general feasible sets for the two methods do overlap at least at one point (which
corresponds to low-order fluxes) but do not contain each other. We demonstrate superiority of our new method on a set of
numerical examples.

Let us note that there are other approaches for computing compatible fluxes. For system of two advection equations one
such approach is described in [29], where the authors use some special limiting procedure for gradient limiting in context of
upstream-centered methods. In our terminology, this is a sequential method, that is, limiting of density gradient is not af-
fected by bounds of other quantities. In the context of remapping, an interesting approach is introduced in [27]. It is also
based on gradient limiting, but it is really a synchronous method. Unfortunately this method is very complicated and we
do not have enough information about its performance. We are not considering these methods here because they are not
FCT-based.

The rest of this paper is organized as follows: The rationale for our work is given in Section 2. In this section we describe a
general problem of remapping. In Section 3, we describe the method for remapping of density by correcting mass fluxes,
which follows the logic of the original FCT approach [4] as it was modified by Zalesak [30]. In Section 4 we describe our
new method - Synchronized Flux-Corrected Remapping (SFCR) of constructing compatible fluxes for remapping of mass/den-
sity and momentum/velocity. We also describe our modification of method [25] for remapping. In Section 5 we demonstrate
the performance of the SFCR method and compare it with method from [25] on series of 1D examples. Numerical examples
in 2D are presented in Section 6.
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After rezoning, the old mesh fzig is mapped into a new mesh f~zig. We define a set ZðziÞ ¼
S

kzk, such that
~zi � ZðziÞ: ð2:1Þ
For any two grids, such a set exists because ~zi 2
Simax

k¼1zk. However we will always consider the minimal set for which (2.1)
holds. For the rezoning method described in [12]
ZðziÞ ¼ zi

[
ZðziÞ; ð2:2Þ
that is, the new cell ~zi is contained in the union of the old cell zi and its immediate neighbors, see, for example, Fig. 2b).
The volume of cell zi is denoted by
VðziÞ ¼
Z

zi

dV :
In the following text, all physical quantities (e.g. the density q or the mass m) remapped onto the new grid will have the tilde
accent (e.g. ~q) whereas values on the old (Lagrangian) grid will have no accent.

2.2. Statement of the remapping problem

2.2.1. Remapping of mass-density
We assume that there is a positive function qðrÞ > 0; r ¼ ðx; y; zÞ, which we call density, that is defined throughout the

problem domain. The only information that we are given about this function is its mean value in each of the cells of the
old grid:
qi ¼
R

zi
qðrÞdV

VðziÞ
; ð2:3Þ
where VðziÞ is the volume of cell Ci. The numerator of (2.3) is the cell mass:
mi :¼
Z

zi

qðrÞdV ;
and so the density is
qi ¼
mi

VðziÞ
:

The total problem mass is
M :¼
Z

X
qðrÞdV ¼

Ximax

i¼1

Z
zi

qðrÞdV ¼
Ximax

i¼1

mi ¼
Ximax

i¼1

qiVðziÞ:
The task is to find accurate approximations ~mi for the masses of the new cells
~mi � mexact
i ¼

Z
~zi

qðrÞdV : ð2:4Þ
For high-order remapping we typically require linearity preservation, which means that if qðrÞ is a linear function of r on the
whole computational domain X then the linearity preserving remapping produces remapped masses (and densities below)
which are exact, i.e. ~mLP

i ¼ mexact
i .

First constraint is that the new cell masses must satisfy the global conservation of the total mass:
Ximax

i¼1

~mi ¼ M: ð2:5Þ
The approximate mean values of density in the new cells are then defined by
~qi ¼
~mi

Vð~ziÞ
: ð2:6Þ
Second requirement follows from assumption that we are using continuous rezone strategy and therefore new cell ~zi is
contained in the union of the old cell zi and its immediate neighbors which share with it face, edge or node, that is,
~zi 2 ZðziÞ ¼ zi

[
ZðziÞ: ð2:7Þ
This assumption leads to natural requirement that the value of the remapped density, ~qi, has to be in the following
bounds:
qmin
i 6 ~qi 6 qmax

i ; qmin
i ¼min

ZðziÞ
ðqiÞ; qmax

i ¼max
ZðziÞ
ðqiÞ: ð2:8Þ



1472 R. Liska et al. / Journal of Computational Physics 229 (2010) 1467–1497
Using (2.6), the requirement (2.8) for remapped density can be also expressed in terms of masses
mmin
i ¼ qmin

i Vð~ziÞ 6 ~mi 6 qmax
i Vð~ziÞ ¼ mmax

i : ð2:9Þ
2.2.2. Remapping of momentum-velocity
We assume that there is a vector function uðrÞ; r ¼ ðx; y; zÞ, which we call velocity, that is defined throughout the problem

domain. The only information that we are given about this function is its mean value in each of the cells of the old grid:
ui ¼
R

zi
uqdV

mi
: ð2:10Þ
The numerator of (2.10) is the cell momentum
li :¼
Z

zi

uqdV :
The total problem momentum is
M :¼
Z

X
uqdV ¼

Ximax

i¼1

Z
zi

uqdV ¼
Ximax

i¼1

li ¼
Ximax

i¼1

uimi:
The problem statement is to find accurate approximations ~li for the momentum of the new cells
~li � lex
i ¼

Z
~zi

uqdV :
First constraint is that the new cell momentum must satisfy the global conservation of the total momentum:
Ximax

i¼1

~li ¼M: ð2:11Þ
The approximate mean values of velocity in the new cells are defined by
~ui ¼
~li

~mi
: ð2:12Þ
It is clear that remapped velocity depends both on remapped momentum and on remapped mass.
Similarly to density there are natural bounds for velocity:
umin
i 6 ~ui 6 umax

i ; umin
i ¼min

ZðziÞ
ðuiÞ; umax

i ¼max
ZðziÞ
ðuiÞ; ð2:13Þ
where maximum resp. minimum are taken component by component and vector inequality is defined below. To simplify the
notation we use the inequality relations operators P; >; 6 and < applied to vectors. Having two vectors A ¼ ðAx;Ay;AzÞ and
B ¼ ðBx;By; BzÞ, we define
A / B() ð8f 2 fx; y; zg; Af / BfÞ; for / 2 fP; >;6; <g: ð2:14Þ
The constraint (2.13) can be written (using (2.12)) in equivalent form for momentum l
lmin
i ¼ ~miumin

i 6 ~li 6 ~miumax
i ¼ lmax

i ; ð2:15Þ
or for each its component
lmin
i

� �
f
¼ ~miðumin

i Þf 6 ð~liÞf 6 ~miðumax
i Þf ¼ ðlmax

i Þf; ð2:16Þ
where f 2 fx; y; zg.
The main topic of this paper is how to find accurate, bounded approximations for the densities (masses) and the velocities

(momentum) on the new mesh, such that total mass and momentum are conserved. This task is usually referred to as
bounds-preserving remapping, or alternately, as bounds-preserving conservative interpolation.

As for mass-density high-order remapping we require linearity preservation (see explanation below (2.4)) also for high-
order momentum remapping. Another property worth to consider for density and momentum remapping is the DeBar con-
sistency condition [5,3]. The remapping satisfies the DeBar condition if for constant velocity field (in the whole domain X)
and arbitrary density the remapping reproduces the constant velocity field exactly. For example it can be easily proven, that
if the mass and momentum fluxes (see below) are related by Fl

i;k ¼ Fm
i;ku�i;k, where u�i;k is a reasonable approximation of veloc-

ity on face ði; kÞ, then remapping satisfies the DeBar condition. We however do not use this form of momentum fluxes.
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2.3. Flux form. high-order and low-order fluxes

Because we are using continuous rezone strategy we can represent values of the mass and momentum on the new mesh
in flux form (see, for example, [23]):
~mi ¼ mi þ
X

k2ZðziÞ
Fm

i;k; ~li ¼ li þ
X

k2ZðziÞ
Fl

i;k; ð2:17Þ
where
Fm
i;k ¼ �Fm

k;i; Fl
i;k ¼ �Fl

k;i ð2:18Þ
are mass and momentum fluxes. In general, these fluxes are supposed to approximate following exact fluxes:
Fm
i;k �

Z
~zi

T
zk

qdV �
Z

zi

T
~zk

qdV ; Fl
i;k �

Z
~zi

T
zk

uqdV �
Z

zi

T
~zk

uqdV : ð2:19Þ
For derivation of formulas (2.19) interested reader can refer for example to [23]. These formulas take into account the ex-
change of mass and momentum between cells which share the vertex.

In more traditional methods (see, for example, [23]), one uses simplified version of (2.17), where the exchange of mass
and momentum is allowed only between cells that share an face (edge in 2D):
~mi ¼ mi þ
X

si;k2SðziÞ
Fm

i;k; ~li ¼ li þ
X

si;k2SðziÞ
Fl

i;k: ð2:20Þ
In this case fluxes correspond to integrals over so-called swept regions [23,13].
For purposes of this paper it does not matter what set of fluxes is used and therefore we will just simply write
~mi ¼ mi þ
X

k

Fm
i;k; ~li ¼ li þ

X
k

Fl
i;k: ð2:21Þ
Conservation of mass and momentum is guaranteed if we use flux form (2.21) and assume that fluxes satisfy (2.18).
Accuracy of remapping depends on how accurate are the fluxes. Let us denote fluxes which produce high-order accuracy

by Fm;H; Fl;H , and fluxes which produce low-order accuracy by Fm;L; Fl;L.
One of the standard ways to obtain intercell fluxes is to first do some reconstruction of functions q and qu on the old

mesh from their mean values and then use some approximation of exact fluxes (2.19) or similar integrals over the swept
regions. For example, low-order fluxes can correspond to piecewise constant reconstruction, and high-order fluxes can cor-
respond to piecewise linear reconstruction [23,13].
2.4. Constraints for fluxes

Having the flux form for remapped mass and momentum we can write constraints related to bounds preservation for
density and velocity as follows:
mmin
i 6 mi þ

X
k

Fm
i;k 6 mmax

i ; ð2:22Þ

umin
i mi þ

X
k

Fm
i;k

 !
6 li þ

X
k

Fl
i;k 6 umax

i mi þ
X

k

Fm
i;k

 !
: ð2:23Þ
From the formal point of view it is a global system of linear inequalities with respect to mass and momentum fluxes. It is
important to note that inequalities (2.23), which are coming from bounds for velocity, contain both mass and momentum
fluxes.

Usually the low-order fluxes are constructed so that inequalities (2.22) and (2.23) are satisfied, which ensures that the
system of inequalities has at least one solution. We assume in this paper that low-order fluxes satisfy the density and veloc-
ity bounds (2.22) and (2.23).

Our goal is to construct fluxes which are as close as possible to high-order fluxes but still satisfy the system of inequalities
(2.22) and (2.23).

Formally this problem can be formulated in different ways. For example, one can formulate optimization problem as fol-
lows: find fluxes Fm

i;k; Fl
i;k such that in some norm these fluxes are as close as possible to high-order fluxes, that is,
min jmkFm � Fm;Hkm þ jlkFl � Fl;Hkl
� �

; ð2:24Þ
where ji are some weights, and fluxes satisfy linear constraints (2.22) and (2.23). That is, we can formulate our problem as a
global minimization problem with linear constraints. The minimization problem is treated in detail in Section 4.3.
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3. FCR for mass-density

In this section we describe flux-corrected remapping (FCR) for mass-density. In general it follows the standard FCT der-
ivation (see, for example, [14]) with some specifics related to remapping. It is not new, however it is instructional and serves
as preparation for dealing with the system including density and momentum in the following section.

If we need to remap only mass-density then the goal is to find mass fluxes, Fm
i;k, such that linear constraints (2.22) are sat-

isfied and these fluxes are as close as possible to high-order fluxes:
min kFm � Fm;Hkm: ð3:1Þ
An example of possible norm in (3.1) is the L1 norm
kFm � Fm;HkL1
m ¼

X
i;k

Fm
i;k � Fm;H

i;k

��� ���;

where the sum is taken over all faces ði; kÞ in the grid.

Goal of the FCR is to replace global minimization problem (3.1) and (2.22) by a series of local problems. As we have al-
ready mentioned, by doing this we do not solve global optimization problem, but still are able to find fluxes which are more
accurate than the low-order fluxes, and which guarantee the preservation of bounds.

First we assume that mass flux is a combination of the low-order and high-order flux:
Fm
i;k ¼ Fm;L

i;k þ Cm
i;kdFm

i;k; dFm
i;k ¼ �dFm

k;i ¼ Fm;H
i;k � Fm;L

i;k

� �
; ð3:2Þ
where
0 6 Cm
i;k ¼ Cm

k;i 6 1
is some coefficient to be defined, such that if it is equal to zero we recover low-order flux and if it is one we recover high-
order flux. dFm

i;k are called antidiffusive fluxes. Our goal is to find Cm
k;i such that resulting fluxes guarantee bounds preservation

and are as close as possible to high-order fluxes in some sense.
In FCT methodology this problem is replaced by series of simple problems for each face. Such replacement does not give

the optimal solution, but bounds are satisfied and flux may be more accurate than low-order flux.
Using (3.2), we can rewrite equation (2.21) for new mass as
~mi ¼ ~mL
i þ

X
k

Cm
i;kdFm

i;k; ~mL
i ¼ mi þ

X
k

Fm;L
i;k : ð3:3Þ
Then constraints (2.9), resp. (2.22), can be written as
mmin
i � ~mL

i 6
X

k

Cm
i;kdFm

i;k 6 mmax
i � ~mL

i : ð3:4Þ
By assumption the low-order fluxes satisfy the bounds mmin
i � ~mL

i 6 0 6 mmax
i � ~mL

i and therefore constraints (3.4) always can
be satisfied by choosing all Cm

i;k equal to zero. These differences are usually denoted by
Qm;max
i ¼ mmax

i � ~mL
i P 0; Q m;min

i ¼ mmin
i � ~mL

i 6 0:
Let us now consider the right-hand inequality in (3.4)
X
k

Cm
i;kdFm

i;k 6 Q m;max
i : ð3:5Þ
The sum on the left-hand side of (3.5) can be subdivided into two sums depending on the sign of dFm
i;k and estimated by the

first sum, since the second sum is negative:
X
k

Cm
i;kdFm

i;k ¼
X

dFm
i;k>0

Cm
i;kdFm

i;k þ
X

dFm
i;k<0

Cm
i;kdFm

i;k 6
X

dFm
i;k>0

Cm
i;kdFm

i;k: ð3:6Þ
So if
 X
dFm

i;k>0

Cm
i;kdFm

i;k 6 Qm;max
i ð3:7Þ
is satisfied then (3.5) is satisfied too.
Let us defineX
Pm;þ
i :¼

dFm
i;k>0

dFm
i;k P 0 ð3:8Þ
and first check the special case when Pm;þ
i ¼ 0. In this case both sums in (3.8) and (3.7) are empty since for all faces ði; kÞ of

cell i the antidiffusive fluxes dFm
i;k are non-positive dFm

i;k 6 0 and the inequality (3.5) is satisfied because Cm
i;k P 0; dFm

i;k 6 0 and
Qm;max

i P 0.
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Now we can assume that Pm;þ
i > 0 and rewrite (3.7) as
X
dFm

i;k>0

Cm
i;kdFm

i;k 6 Dm;þ
i Pm;þ

i ; ð3:9Þ
where
Dm;þ
i ¼ Q m;max

i =Pm;þ
i : ð3:10Þ
Substituting definitions of Pm;þ
i into (3.9) and moving Dm;þ

i inside the sum defining Pm;þ
i we get
X

dFm
i;k>0

Cm
i;kdFm

i;k 6
X

dFm
i;k>0

Dm;þ
i dFm

i;k; ð3:11Þ
which is clearly satisfied if
Cm
i;k 6 Dm;þ

i for dFm
i;k > 0: ð3:12Þ
This is the final constraint on Cm
i;k for face ði; kÞ coming from the upper density-mass bound in cell i.

For the left inequality in (3.4) we can use similar derivation to obtain the expression for Dm;�
i

Dm;�
i ¼ Q m;min

i =Pm;�
i ; ð3:13Þ
where
Pm;�
i ¼

X
dFm

i;k<0

dFm
i;k 6 0; ð3:14Þ
and the final constraint on Cm
i;k coming from the density-mass lower bound
Cm
i;k 6 Dm;�

i for dFm
i;k < 0: ð3:15Þ
Note that this constraint is activated only when dFm
i;k < 0 in which case Pm;�

i < 0 so that (3.13) makes sense. If dFm
i;k P 0 then

this constraint is not activated.
So being on face ði; kÞ we look at the sign of dFm

i;k and activate either constraint (3.12) or (3.15) coming either from the
upper or lower density-mass bound in cell i. To recall completely: if dFm

i;k > 0 then we require Cm
i;k 6 Dm;þ

i and if dFm
i;k < 0 then

we require Cm
i;k 6 Dm;�

i (if dFm
i;k ¼ 0 then the bounds in cell i do not require any constraint on Cm

i;k). However being on face ði; kÞ
we have to incorporate also the constraints coming from the bounds in the second cell k sharing this face.

Clearly if dFm
i;k > 0, then dFm

k;i ¼ �dFm
i;k < 0 and the corresponding coefficient Cm

i;k ¼ Cm
k;i has to satisfy two inequalities
Cm
i;k 6 Dm;þ

i ; Cm
i;k 6 Dm;�

k ;
and we can choose any Cm
i;k 6 Cm;q

i;k , where Cm
i;k has the upper bound
Cm;q
i;k ¼min Dm;þ

i ;Dm;�
k ;1

� �
for dFm

i;k > 0; ð3:16Þ
and similarly
Cm;q
i;k ¼min Dm;�

i ;Dm;þ
k ;1

� �
if dFm

i;k < 0: ð3:17Þ
For completeness, we can formally set Cm;q
i;k ¼ 1 if dFm

i;k ¼ 0, but in this case the final product will be zero anyway. Now if we
want to satisfy only density-mass bounds we choose Cm

i;k ¼ Cm;q
i;k to be as close as possible to the high-order approximation

(for which Cm
i;k ¼ 1).

In summary, for each face ði; kÞ we have found coefficients Cm
i;k in formulas (3.2) such that constraints (2.22) are satisfied,

and resulting mass fluxes are in general more accurate than the low-order fluxes.
The logic of derivation of formulas (3.16) and (3.17) will be used in next section, where we will consider simultaneous

remap of density-mass and velocity-momentum.
4. FCR for mass-density and momentum-velocity in 1D

For simplicity of explanation we start with a 1D case when the momentum l and velocity u are scalars. We will deal with
the general case of vector velocities and momenta later. We assume that similarly to mass flux the momentum flux is a com-
bination of the low-order and high-order flux:
Fl
i;k ¼ Fl;L

i;k þ Cl
i;kdFl

i;k; dFl
i;k ¼ �dFl

k;i ¼ Fl;H
i;k � Fl;L

i;k

� �
: ð4:1Þ
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Then constraints (2.23) can be rewritten as
umin
i

~mL
i þ umin

i

X
k

Cm
i;kdFm

i;k 6
~lL

i þ
X

k

Cl
i;kdFl

i;k 6 umax
i

~mL
i þ umax

i

X
k

Cm
i;kdFm

i;k; ð4:2Þ
where ~lL
i is defined similarly to ~mL

i in (3.3):
~lL
i ¼ li þ

X
k

Fl;L
i;k :
It is clear that constraints (4.2) form a coupled system of linear inequalities with respect to coefficients Cm
i;k; Cl

i;k (all other
quantities are known numbers). Remember that this system has to be solved together with inequalities (3.4) arising from
mass-density constraints.

Let us consider the right-hand inequality in (4.2)
~lL
i þ

X
k

Cl
i;kdFl

i;k 6 umax
i

~mL
i þ umax

i

X
k

Cm
i;kdFm

i;k ð4:3Þ
and move terms with C’s to left-hand side and other terms to right-hand side:
X
k

Cl
i;kdFl

i;k � umax
i

X
k

Cm
i;kdFm

i;k 6 umax
i ~mL

i � ~lL
i : ð4:4Þ
Because we assume that the low-order fluxes satisfy the bounds, the expression umax
i

~mL
i � ~lL

i P 0 on the right-hand side is
non-negative for any cell i, and if all C’s are zero, then the inequality (4.4) is satisfied (similarly the left inequality of (4.2) is
also satisfied), that is there is at least one solution for (4.4). Our goal is to find another solution (if it exists) where C’s are
closer to one.

4.1. The method by Schär and Smolarkiewicz

There are several possible approaches to deal with system (4.4). For example, in [25] (paper which in some sense inspired
our work) authors do the following. They analyze inequality (4.4) for cell i depending on the sign of umax

i . Let us assume that
umax

i > 0. Then we can estimate the left-hand side of (4.4) from above as follows
X
k

Cl
i;kdFl

i;k � umax
i

X
k

Cm
i;kdFm

i;k 6
X

dFl
i;k
>0

Cl
i;kdFl

i;k � umax
i

X
dFm

i;k<0

Cm
i;kdFm

i;k; ð4:5Þ
where we have removed from the left-hand side of (4.5) all terms which are negative or zero ðCm
i;k P 0;Cl

i;k P 0;umax
i > 0Þ.

Now if we find Cm
i;k and Cl

i;k such that
X
dFl

i;k
>0

Cl
i;kdFl

i;k � umax
i

X
dFm

i;k<0

Cm
i;kdFm

i;k 6 Ql;max
i ; ð4:6Þ
where
Ql;max
i :¼ umax

i
~mL

i � ~lL
i P 0; ð4:7Þ
then (4.4) is satisfied for these Cm
i;k and Cl

i;k.
We define
Pl;umax>0;þ
i :¼

X
dFl

i;k
>0

dFl
i;k � umax

i

X
dFm

i;k<0

dFm
i;k P 0: ð4:8Þ
Pl;umax>0;þ
i is zero if and only if both sums are empty. Then also both sums on the left-hand side of (4.6) are empty, the left-

hand side is zero and (4.6) is satisfied trivially as Ql;max
i P 0.

Assuming Pl;umax>0;þ
i > 0, we rewrite (4.6) as
X

dFl
i;k
>0

Cl
i;kdFl

i;k � umax
i

X
dFm

i;k<0

Cm
i;kdFm

i;k 6 Dl;umax>0;þ
i Pl;umax>0;þ

i ; ð4:9Þ
where
Dl;umax>0;þ
i ¼ Ql;max

i =Pl;umax>0;þ
i : ð4:10Þ
Substituting definitions of Pl;umax>0;þ
i into (4.9) and moving Dl;umax>0;þ

i inside the two sums, we get
X
dFl

i;k
>0

Cl
i;kdFl

i;k � umax
i

X
dFm

i;k<0

Cm
i;kdFm

i;k 6
X

dFl
i;k
>0

Dl;umax>0;þ
i dFl

i;k � umax
i

X
dFm

i;k<0

Dl;umax>0;þ
i dFm

i;k; ð4:11Þ
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which is clearly satisfied if
Cl
i;k 6 Dl;umax>0;þ

i for dFl
i;k > 0; ð4:12Þ

Cm
i;k 6 Dl;umax>0;þ

i for dFm
i;k < 0: ð4:13Þ
Note that Dl;umax>0;þ
i is the upper bound for Cl

i;k for face ði; kÞ such that dFl
i;k > 0 and for Cm

i;k such that dFm
i;k < 0, assuming

umax
i > 0. In general it may be different sets of faces which are actually involved by a nonzero contribution. Other C’s are only

required to be positive with respect to constraint (4.4).
Similar formulas can be obtained assuming that umax

i < 0 (or umax
i ¼ 0) and for the left inequality in (4.2) depending on the

assumption of the sign of umin
i . Clearly final values of the Cl

i;k; Cm
i;k will depend on active constraints from both cells sharing

face ði; kÞ. As all the constructed active constraints have the form of the upper bound on Cm
i;k or Cl

i;k and all constraints have to
hold simultaneously, the resulting set of admissible values of Cm

i;k and Cl
i;k in the ðCm

i;k;C
l
i;kÞ plane will be a rectangle (see exam-

ples in Fig. 5).
We refer the interested reader to the original paper [25] for details of their method which is there developed also in 2D

(our presentation here can be extended also to multiple dimensions). In this paper we will use this method as a baseline for
comparison with the new method which we describe next.

4.2. Synchronized FCR (SFCR) in 1D

We first consider the right-hand side constraint of (4.2) written as (4.4), i.e. the constraint containing the upper bound for
velocity umax. Let us denote the left-hand side of (4.4) by Sl;max

i and group the terms on the left-hand side by faces
Sl;max
i :¼

X
k

Cl
i;kdFl

i;k � umax
i Cm

i;kdFm
i;k

� �
6 umax

i
~mL

i � ~lL
i : ð4:14Þ
In general, the terms in the sum corresponding to the particular face ði; kÞ in (4.14) can be positive or negative.
We define the ‘‘limited” contribution to the sum Sl;max

i from face ði; kÞ appearing in (4.14)
Ui;l;max
i;k :¼ Cl

i;kdFl
i;k � umax

i Cm
i;kdFm

i;k ð4:15Þ
and the ‘‘unlimited” contribution
Wi;l;max
i;k :¼ dFl

i;k � umax
i dFm

i;k: ð4:16Þ
Both Ui;l;max
i;k and Wi;l;max

i;k are related to cell i denoted by the superscript i coming from velocity umax
i and to face ði; kÞ denoted

by subscripts ði; kÞ and coming from the antidiffusive fluxes dFm
i;k and dFl

i;k.
To follow the logic of the FCR derivation for density-mass in Section 3, we split the sum Sl;max

i in (4.14) according to the
signs of the ‘‘unlimited” contributions Wi;l;max

i;k (4.16) and rewrite (4.14) as
Sl;max;þ
i þ Sl;max;�

i 6 Ql;max
i ; ð4:17Þ
where Ql;max
i ¼ umax

i
~mL

i � ~lL
i P 0 was defined in (4.7) and
Sl;max;þ
i :¼

X
Wi;l;max

i;k
>0

Ui;l;max
i;k ; Sl;max;�

i :¼
X

Wi;l;max
i;k

60

Ui;l;max
i;k : ð4:18Þ
Now if we find Cm
i;k and Cl

i;k so that
Sl;max;�
i 6 0; ð4:19aÞ

Sl;max;þ
i 6 Ql;max

i ; ð4:19bÞ
then (4.17) holds.
Let us first look at the inequality (4.19a)
Sl;max;�
i ¼

X
Wi;l;max

i;k
60

Ui;l;max
i;k 6 0: ð4:20Þ
Clearly it is satisfied if we require that
Ui;l;max
i;k ¼ Cl

i;kdFl
i;k � umax

i Cm
i;kdFm

i;k 6 0 for Wi;l;max
i;k 6 0: ð4:21Þ
So on faces where the unlimited contribution Wi;l;max
i;k is non-positive we require that the limited contribution Wi;l;max

i;k is
also non-positive, which gives some of the conditions which have to be satisfied by Cm

i;k and Cl
i;k. The inequality (4.21) is not

equivalent to (4.20), it is only a sufficient condition for (4.20), i.e. (4.21) implies (4.20). The inequality (4.21) is the local con-
straint on the face ði; kÞ which is obtained from maximum bound condition in cell i in case of Wi;l;max

i;k 6 0. Note that the only
unknowns in the linear inequality (4.21) are Cm

i;k and Cl
i;k, all other quantities including dFl

i;k; dFm
i;k, umax

i ; Wi;l;max
i;k are known

numbers at this stage.
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Before dealing with the second inequality (4.19b) we define
Pl;max;þ
i :¼

X
Wi;l;max

i;k
>0

Wi;l;max
i;k P 0:
Pl;max;þ
i is zero if and only if the sum is empty, which means that Wi;l;max

i;k 6 0 for all faces ði; kÞ of cell i. So if Pl;max;þ
i ¼ 0 then

also Sl;max;þ
i ¼ 0 as the sum which defines it in (4.18) is also empty. As Ql;max

i P 0 (the low-order remapping satisfies the
bounds), the inequality (4.19b) is satisfied in this case, and for all faces ði; kÞ of cell i the constraints (4.21) (which are the
only constraints coming from the maximum bound in cell i) on Cm

i;k and Cl
i;k will be activated.

Assuming Pl;max;þ
i > 0, the second inequality (4.19b) is rewritten as
Sl;max;þ
i 6 Dl;max;þ

i Pl;max;þ
i ; ð4:22Þ
where and Dl;max;þ
i is given by
Dl;max;þ
i ¼ Ql;max

i =Pl;max;þ
i : ð4:23Þ
Substituting definitions of Sl;max;þ
i and Pl;max;þ

i into (4.22) we get
X
Wi;l;max

i;k
>0

Ui;l;max
i;k 6 Dl;max;þ

i

X
Wi;l;max

i;k
>0

Wi;l;max
i;k ; ð4:24Þ
which is clearly satisfied if
Ui;l;max
i;k 6 Dl;max;þ

i Wi;l;max
i;k for Wi;l;max

i;k > 0: ð4:25Þ
The inequality (4.25) is not equivalent to (4.22), it is only a sufficient condition for (4.22), i.e. (4.25) implies (4.22). The
inequality (4.25) is the local constraint on face ði; kÞ which is obtained from maximum bound condition in cell i in case of
Wi;l;max

i;k > 0. The condition (4.25) rewritten in the form
Cl
i;kdFl

i;k � umax
i Cm

i;kdFm
i;k 6

Ql;max
i

Pl;max;þ
i

Wi;l;max
i;k for Wi;l;max

i;k > 0 ð4:26Þ
gives us the constraint on Cm
i;k and Cl

i;k on faces ði; kÞ where the contribution Wi;l;max
i;k is positive. Again the only unknowns in

the linear inequality (4.26) are Cm
i;k and Cl

i;k, all other quantities including dFl
i;k; dFm

i;k; umax
i ; Wi;l;max

i;k ; Ql;max
i ; Pl;max;þ

i are known
numbers at this stage.

To summarize, we derived the linear inequalities ((4.21) or (4.26) depending on the sign of Wi;l;max
i;k ) for Cm

i;k and Cl
i;k on the

particular face ði; kÞ which are sufficient for satisfying the maximum bound in velocity (the right inequality of (4.2)) in cell i.
In the following we are going to derive in the same manner the constraints which will be sufficient for satisfying the min-
imum bound in velocity.

The process for the constraint with the lower velocity bound umin, i.e. the left inequality of (4.2) resp. (2.23), is a full anal-
ogy of the above process for the upper velocity bound: Let us move the terms with C’s to the left-hand side and other terms
to the right-hand side and further denote the left-hand side by Sl;min

i :
Sl;min
i :¼

X
k

Cl
i;kdFl

i;k � umin
i Cm

i;kdFm
i;k

� �
P umin

i
~mL

i � ~lL
i ; ð4:27Þ
where we have grouped terms on the left-hand side by faces. In general, the terms in the sum corresponding to the particular
face ði; kÞ in (4.27) can be positive or negative.

We define the ‘‘limited” contribution to the sum Sl;min
i from face ði; kÞ appearing in (4.27)
Ui;l;min
i;k :¼ Cl

i;kdFl
i;k � umin

i Cm
i;kdFm

i;k ð4:28Þ
and the ‘‘unlimited” contribution
Wi;l;min
i;k :¼ dFl

i;k � umin
i dFm

i;k; ð4:29Þ
which actually corresponds to the ‘‘limited” contribution Ui;l;min
i;k (4.28) with Cl

i;k ¼ Cm
i;k ¼ 1.

Again we split the sum Sl;min
i in (4.27) according to the signs of the ‘‘unlimited” contributions Wi;l;min

i;k (4.29) and rewrite
(4.27) as
Sl;min;þ
i þ Sl;min;�

i P Ql;min
i ; ð4:30Þ
where Ql;min
i ¼ umin

i
~mL

i � ~lL
i 6 0 and
Sl;min;þ
i :¼

X
Wi;l;min

i;k
P0

Ui;l;min
i;k ; Sl;min;�

i :¼
X

Wi;l;min
i;k

<0

Ui;l;min
i;k : ð4:31Þ
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Now if we find Cm
i;k and Cl

i;k so that
Sl;min;þ
i P 0; ð4:32aÞ

Sl;min;�
i P Ql;min

i ; ð4:32bÞ
then (4.30) holds.
Let us first look at the inequality (4.32a)
Sl;min;þ
i ¼

X
Wi;l;min

i;k
P0

Ui;l;min
i;k P 0: ð4:33Þ
Clearly it is satisfied if we require that
Ui;l;min
i;k ¼ Cl

i;kdFl
i;k � umin

i Cm
i;kdFm

i;k P 0 for Wi;l;min
i;k P 0: ð4:34Þ
This is the linear inequality in Cm
i;k and Cl

i;k for the case Wi;l;min
i;k P 0.

Before dealing with the second inequality (4.32b) we define
Pl;min;�
i :¼

X
Wi;l;min

i;k
<0

Wi;l;min
i;k 6 0:
Pl;min;�
i is zero if and only if the sum is empty, which means that Wi;l;min

i;k P 0 for all faces ði; kÞ of cell i. So if Pl;min;�
i ¼ 0 then

also Sl;min;�
i ¼ 0 as the sum which defines it in (4.31) is also empty. As Ql;min

i 6 0 (the low-order remapping satisfies the
bounds) the inequality (4.32b) is satisfied in this case and for all faces ði; kÞ of cell i the constraints (4.34) (which are the only
constraints coming from the minimum bound) on Cm

i;k and Cl
i;k will be activated.

Assuming Pl;min;�
i < 0, the second inequality (4.32b) is rewritten as
Sl;min;�
i P Dl;min;�

i Pl;min;�
i ; ð4:35Þ
where Dl;min;�
i is given by
Dl;min;�
i ¼ Ql;min

i =Pl;min;�
i : ð4:36Þ
Substituting definitions of Sl;min;�
i and Pl;min;�

i into (4.35) we get
X
Wi;l;min

i;k
<0

Ui;l;min
i;k P Dl;min;�

i

X
Wi;l;min

i;k
<0

Wi;l;min
i;k ; ð4:37Þ
which is clearly satisfied if
Ui;l;min
i;k P Dl;min;�

i Wi;l;min
i;k for Wi;l;min

i;k < 0: ð4:38Þ
The previous condition rewritten in the form
Cl
i;kdFl

i;k � umin
i Cm

i;kdFm
i;k P

Ql;min
i

Pl;min;�
i

Wi;l;min
i;k for Wi;l;min

i;k < 0 ð4:39Þ
gives us the constraint on Cm
i;k and Cl

i;k on faces ði; kÞ where the contribution Wi;l;min
i;k is negative. Again, the only unknowns in

the linear inequality (4.39) are Cm
i;k and Cl

i;k.
To summarize we combine here the linear inequalities for Cm

i;k and Cl
i;k (on face ði; kÞ) sufficient for upper (4.21) and (4.26)

and lower (4.34) and (4.39) velocity bounds in cell i into one formula for each bound:
Cl
i;kdFl

i;k � umax
i Cm

i;kdFm
i;k 6

Ql;max
i

Pl;max;þ
i

max Wi;l;max
i;k ;0

� �
; ð4:40aÞ

Cl
i;kdFl

i;k � umin
i Cm

i;kdFm
i;k P

Ql;min
i

Pl;min;�
i

minðWi;l;min
i;k ;0Þ: ð4:40bÞ
This gives us on face ði; kÞ one inequality sufficient for maximum velocity bound and one inequality sufficient for minimum
bound in the cell i. To get the full set of constraints on Cm

i;k and Cl
i;k for the particular face ði; kÞ, we need to apply both max-

imum and minimum constraints also in the second cell k sharing face ðk; iÞ (for which Cm
k;i ¼ Cm

i;k and Cl
k;i ¼ Cl

i;k ). So on each
face we will have the system of four linear inequalities for Cm

i;k and Cl
i;k which guarantee the preservation of velocity bounds in

both neighboring cells.
The additional inequality Cm

i;k 6 Cm;q
i;k , where the upper bound Cm;q

i;k is given by (3.16) and (3.17), is coming from the density
bound (3.4) and from the basic assumptions on Cm

i;k and Cl
i;k we have 0 6 Cm

i;k and 0 6 Cl
i;k 6 1. So on face ði; kÞ the admissible

set of Cm
i;k and Cl

i;k is defined by potentially as many as eight linear inequalities in Cm
i;k and Cl

i;k. Thus the admissible set is a
convex polygon defined by intersection of eight half-planes in ðCm

i;k;C
l
i;kÞ plane (each half-plane is defined by one inequality).



1480 R. Liska et al. / Journal of Computational Physics 229 (2010) 1467–1497
We denote this set Ai;k and clearly Ai;k ¼ Ak;i. Both density and velocity bounds are satisfied by remapping solution obtained
from any pair ðCm

i;k;C
l
i;kÞ from the admissible set. As we know that low-order remapping satisfies both bounds, we know that

the point ðCm
i;k;C

l
i;kÞ ¼ ð0;0Þ belongs into the admissible set Ai;k and therefore the set is not empty.

4.3. Optimal choice of C’s

In the previous section we have constructed for each face ði; kÞ the admissible set Ai;k of Cm
i;k and Cl

i;k in the ðCm
i;k;C

l
i;kÞ plane.

Any ðCm
i;k;C

l
i;kÞ 2 Ai;k from the admissible set gives the solution which satisfies the bounds in density and velocity. The admis-

sible set Ai;k is a convex polygon which is a subset of ð0;1Þ � ð0;1Þ and contains the origin, i.e. ð0;0Þ 2 Ai;k. Now we need to
decide which pair ðCm

i;k;C
l
i;kÞ 2 Ai;k to use for remapping.

For the method by Schär and Smolarkiewicz described in Section 4.1 the admissible set is a rectangle in the ðCm
i;k;C

l
i;kÞ plane

and their natural choice is the upper right corner of the admissible set for which both C’s attain the maximum values on the
admissible set.

Our original wish was to minimize the deviations of the new density ~q and velocity ~u from their high-order approxima-
tions (denoted by superscript H) computed by high-order fluxes, that is,
min jqk~q� ~qHkq þ juk~u� ~uHku

� �
; ð4:41Þ
where the minimization goes over all ðCm
i;k;C

l
i;kÞ 2 Ai;k on all faces ði; kÞ of the grid and where jq; ju are some suitable weights.

Substituting the formulas for the new, remapped ~q, ~u we see that this is a global minimization problem, for which we do not
know how to transform it into a local one. The FCT approach allowed us to make bounds local and we want to choose the
ðCm

i;k;C
l
i;kÞ 2 Ai;k also locally. So instead of global minimization (4.41) we choose to minimize the sum of relative (w.r.t. the old

values) deviations of the new mass density ~q and momentum density ~n ¼ ~q~u from their high-order approximations
min
~q� ~qH

q

����
����

q
þ

~n� ~nH

n

����
����

n

 !
; ð4:42Þ
and we are going to show that this global minimization (again over all ðCm
i;k;C

l
i;kÞ 2 Ai;k on all faces ði; kÞ of the grid) can be

bounded from above by local minimization problems on all faces ði; kÞ. The velocity and momentum density can be zero.
To avoid division by zero in the second norm in (4.42) we add below in (4.44) a small positive quantity to the denominator
to make it always positive. Since density is assumed to be positive everywhere, similar problem does not appear for the first
norm in (4.42).

Now we choose the L1 norm for both norms in (4.42) and we are minimizing
EL1 ¼
X

i

j~qi � ~qH
i j

qi
þ j

~ni � ~nH
i j

jnij

� 	
Vð~ziÞ; ð4:43Þ
which can be rewritten as
EL1 ¼
X

i

j ~mi � ~mH
i j

qi
þ j

~li � ~lH
i j

jnij

� 	
¼
X

i

X
i;k

Fm
i;k � Fm;H

i;k

qi

�����
�����þ

X
i;k

Fl
i;k � Fl;H

i;k

ni

�����
�����

 !
:

The latest form of EL1 can be estimated by
EL1
6

X
i

X
i;k

jFm
i;k � Fm;H

i;k j
qi

þ
jFl

i;k � Fl;H
i;k j

jnij

 !
¼
X

i;k

ð1� Cm
i;kÞjdFm

i;kj
1
qi
þ 1

qk

� 	
þ 1� Cl

i;k

� �
jdFl

i;kj
1
jnij
þ 1
jnkj

� 	� 	
;

where now the sum in the last expression runs over all faces ði; kÞ of the grid. The global minimum of EL1 (4.43) over all
ðCm

i;k;C
l
i;kÞ 2 Ai;k on all faces ði; kÞ of the grid is estimated from above by the sum of local minima on each face ði; kÞ:
min
ði;kÞ;ðCm

i;k ;C
l
i;k
Þ2Ai;k

ðEL1 Þ 6
X

i;k

min�
Cm

i;k ;C
l
i;k

�
2Ai;k

EL1
i;k;
where the minimized local deviations EL1
i;k are given by
EL1
i;k ¼ 1� Cm

i;k

� �
dFm

i;k

��� ��� 1
qi
þ 1

qk

� 	
þ 1� Cl

i;k

� �
dFl

i;k

��� ��� 1
jnij þ �

þ 1
jnkj þ �

� 	
ð4:44Þ
and the local minimizations are going over ðCm
i;k;C

l
i;kÞ 2 Ai;k on each particular face ði; kÞ. As mentioned before, to avoid division

by zero we added to jnj a suitable small quantity � (density is assumed to be positive). If the mesh has Nf faces then the ori-
ginal minimization of (4.43) over all 2Nf parameters ðCm

i;k;C
l
i;kÞ 2 Ai;k is replaced by Nf local minimizations of (4.44) over two

particular parameters ðCm
i;k;C

l
i;kÞ 2 Ai;k defined for face ði; kÞ.

The minimum of linear objective function EL1
i;k (4.44) over the (convex polygonal) admissible set Ai;k is achieved on the

boundary of the polygon Ai;k. In the special case case of non-unique minimum when the minimum of objective function
is achieved on one edge of polygon Ai;k (i.e. when the constraint corresponding to this edge is parallel to the isolines of
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5.2.1. Shock
The first test is a simple shock with the profile
Fig. 6.
mesh.
qðxÞ ¼
4 for 0 6 x 6 0:5
1 for 0:5 < x 6 1



; uðxÞ ¼

1 for 0 6 x 6 0:5
0 for 0:5 < x 6 1




The result after 320 remaps on grid with 64 cells is shown in Fig. 7. We clearly see, that while the solution obtained with low-
order fluxes is too diffusive, the high-order fluxes produce overshoots near the shock in density as well as in velocity. The
SFCR solution follows the high-order profile on the shock, but correctly stays in bounds everywhere. At the final pseudo-time
t ¼ 1 the mesh is at its original position at t ¼ 0, so the original old values are exact solutions to the cyclic remapping
problem.

In Fig. 8 we provide for comparison the final results of SFCR and S&S methods on two resolutions, namely after 320 rem-
aps on grid with 64 cells and after 1280 remaps on grid with 256 cells. Both SFCR and S&S results stay in bounds. The shock
profiles by SFCR method are steeper than those obtained by S&S method and from the convergence rate estimates in Table 1
we can see that SFCR method is more accurate. The original S&S method [25] was designed for transport and did not require
preservation of bounds in density. For fair comparison we have modified it by requiring that Cm on each face is bounded by
the inequalities (3.16) and (3.17) derived in Section 3 on flux-corrected remap (FCR) for mass-density. Without the last
requirement, the results by the original S&S method do not satisfy the density bounds, they satisfy only velocity bounds,
however the final velocity profiles are almost the same as those presented in Fig. 8.

The relative L1 errors and convergence rate estimates (ratio of error on current resolution to error on the previous one) are
presented in Table 1. Notice that SFCR is more precise than both high-order and S&S methods.

CPU times for this convergence test are summarized in Table 2. SFCR method needs about five times more CPU time than
the high-order method. S&S method consumes approximately three times more CPU time than the high-order method. Note
however that these CPU times were obtained by our experimental non-optimized implementation of these methods. They
are presented here only to demonstrate differences in complexity of the methods.

5.2.2. Exponential shock
The second test is the so-called exponential shock, with initial density and velocity profiles
qðxÞ ¼ 3q0 exp xF�x0
d

� �
1þ 2gð Þ�5=2 for 0 6 x 6 xF

q0 exp x�x0
d

� �
for xF < x 6 15

(
; ð5:2aÞ

uðxÞ ¼
1�g

t d for 0 6 x 6 xF

0 for xF < x 6 15

(
ð5:2bÞ
with
xF ¼ x0 þ
3
2

d log
t
t0

� 	
; g ¼ xF � x

d
; t0 ¼ 2; x0 ¼ 6; q0 ¼ 1; d ¼ 4; t ¼ 6:
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Sequence of 1D meshes for cyclic remapping tests with N ¼ 12 and kmax ¼ 8. Red dash-dot lines highlight how node positions change from mesh to





Table 2
CPU times in seconds (on a PC with AMD Opteron Processor 8384 running at 2.7 GHz) for cyclic remapping of shock by low-order, high-order, SFCR and S&S
methods.

N kmax Low-order High-order SFCR S§

64 320 0.001 0.001 0.010 0.006
128 640 0.005 0.006 0.038 0.025
256 1280 0.020 0.030 0.151 0.100
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As seen in Fig. 9, after 640 remaps on 128 cells grid, the low-order fluxes almost removed the peak in density, while the high-
order fluxes produced a dip in velocity at right from the shock. Again, SFCR tracks the high-order solution and resolves the
peaks reasonably, but avoids the undershoots.

In Fig. 10 we provide for comparison the final results of SFCR and S&S methods after 640 remaps on grid with 128 cells.
Both SFCR and S&S results stay in bounds. The SFCR profiles are closer to the exact (old) solution than S&S profiles and from
the convergence rate estimates in Table 3 we can see that also for this problem the SFCR method is more accurate.

The relative L1 errors and convergence rate estimates are presented in Table 3.
6. FCR for mass-density and momentum-velocity in 2D

We are going to extend the SFCR method, developed in Section 4 for the scalar 1D case, to general multidimensional case.
Most of the formulas from the scalar case remain the same, only we need to realize which quantities are vectors now. Clearly
velocities umax

i ; umin
i , momenta li; ~lL

i and momentum fluxes Fl
i;k; Fl;L

i;k ; Fl;H
i;k ; dFl

i;k are vectors, so that e.g. the velocity bounds
(2.23), resp. (4.2) are written as
Fig. 9.
approxi
umin
i ~mL

i þ umin
i

X
k

Cm
i;kdFm

i;k 6 ~lL
i þ

X
k

Cl
i;kdFl

i;k 6 umax
i ~mL

i þ umax
i

X
k

Cm
i;kdFm

i;k ð6:1Þ
and the upper bound, i.e. left inequality of (6.1) with C’s moved to the left-hand side (multidimensional analogy of (4.4)) is
X
k

Cl
i;kdFl

i;k � umax
i

X
k

Cm
i;kdFm

i;k 6 umax
i

~mL
i � ~lL

i : ð6:2Þ
Here we need to recall that all vector inequalities have to be understood in component by component sense as defined in
(2.14).

6.1. Synchronized FCR (SFCR) in multidimensions

Extending the method from Section 4.2 to deal with vector velocity and momentum is quite straightforward. We apply
the method for scalar velocity to each component of vector velocity and momentum, so that for each component we obtain
two linear inequality constraints (4.40a) and (4.40b) on Cm

i;k and Cl
i;k and the admissible set is the intersection of all these con-

straints (half-planes) for all velocity components, together with Cm
i;k 6 Cm;q

i;k which is coming from density-mass bounds (3.16)
and (3.17). Thus again the admissible set is a convex polygon containing at least one point ðCm

i;k;C
l
i;kÞ ¼ ð0;0Þ.

Note that even when dealing with the vector velocity, the variable Cl
i;k remains scalar, because during remapping we do

not want to change the direction of velocity and momentum.
The derivation of SFCR for vector velocity can be written also in compact vector notation, basically almost exactly as in

Section 4.2 with vectors dFl
i;k; umax

i ; Sl;max
i ; Ui;l;max

i;k ; Wi;l;max
i;k ; Sl;max;þ

i ; Sl;max;�
i ; Ql;max

i ; Pl;max;þ
i ; Dl;max;þ

i (and similarly for the
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Table 3
Convergence tables in density and velocity for cyclic remapping of exponential shock by low-order, high-order, SFCR and S&S methods.

Method Resolution L1 error Err. prev./curr. resol.

N kmax q u q u

Low-order 64 320 0.257 0.341
128 640 0.190 0.205 1.4 1.7
256 1280 0.163 0.128 1.2 1.6

High-order 64 320 0.122 0.056
128 640 0.068 0.030 1.8 1.9
256 1280 0.046 0.018 1.5 1.7

SFCR 64 320 0.146 0.049
128 640 0.080 0.025 1.8 2.0
256 1280 0.050 0.014 1.6 1.7

S&S 64 320 0.213 0.083
128 640 0.134 0.039 1.6 2.1
256 1280 0.095 0.022 1.4 1.8
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minimum bound). We are not going to repeat all this in the vector notation, we rather present only the final results, being the
vector form of the constraints (4.40a) and (4.40b), in the compact vector notation:
Cl
i;kdFl

i;k � umax
i Cm

i;kdFm
i;k 6

Ql;max
i

Pl;max;þ
i

max Wi;l;max
i;k ;0

� �
; ð6:3aÞ

Cl
i;kdFl

i;k � umin
i Cm

i;kdFm
i;k P

Ql;min
i

Pl;min;�
i

min Wi;l;min
i;k ;0

� �
: ð6:3bÞ
where
Ql;max
i ¼ umax

i
~mL

i � ~lL
i P 0;

Ql;min
i ¼ umin

i ~mL
i � ~lL

i 6 0;

Wi;l;max
i;k ¼ dFl

i;k � umax
i dFm

i;k;

Wi;l;min
i;k ¼ dFl

i;k � umin
i dFm

i;k;
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and where the relation operators , , in the k ranges of sums defining P0s mean, that the f component of the sum (i.e. Pf)
includes only k for which corresponding component ðWi;kÞf of given W has given sign, so e.g. the f-component for Pl;max;þ

i is
Pl;max;þ
i

� �
f
¼

X
Wi;l;max

i;k

� �
f
>0

Wi;l;max
i;k

� �
f
P 0:
All the operators (i.e. division, multiplication, maximum and minimum) on the right-hand side of inequalities (6.3a) and
(6.3b) are to be understood in a component-wise sense, so that e.g.
Ql;max
i

Pl;max;þ
i

max Wi;l;max
i;k ;0

� � !
f

¼
Ql;max

i

� �
f

Pl;max;þ
i

� �
f

max Wi;l;max
i;k

� �
f
;0

� 	
:

6.2. Optimal choice of C’s in multidimensions

The optimal choice of C’s in multidimensions proceeds in the same way as in 1D in Section 4.3. The admissible set is again
a convex polygon in the ðCm

i;k;C
l
i;kÞ plane containing the origin (0,0). The derivation would proceed in the same way as in 1D,

only the momentum density n ¼ qu and momentum fluxes are vectors and their absolute values have to be replaced by
norms of vectors, so that the final minimized local function (4.44) in multidimensions is written as
EL1
i;k ¼ 1� Cm

i;k

� �
dFm

i;k

��� ��� 1
qi
þ 1

qk

� 	
þ 1� Cl

i;k

� �
dFl

i;k

��� ��� 1
knik þ �

þ 1
knkk þ �

� 	
ð6:4Þ
and we minimize this function on face ði; kÞ with ðCm
i;k; C

l
i;kÞ from the admissible set. The objective function EL1

i;k is linear in Cm
i;k

and Cl
i;k, the admissible set is convex and we take the minimum in one vertex of the admissible set as in 1D.

6.3. Numerical results in 2D

In this section we present several numerical tests of our SFCR method in 2D. Our current implementation works with
quadrilateral, logically rectangular meshes in 2D, however the method presented above can be directly applied also to
unstructured meshes and to 3D. For low-order approximation we use donor fluxes based on piecewise constant reconstruc-
tion on the old grid. For high-order approximation we use remapping fluxes based on piecewise linear reconstruction of the
conserved quantities q and n ¼ qu on the old grid, where the slopes of linear reconstruction inside one cell are obtained by
least square minimization of deviations of given linear reconstruction from mean values in the neighboring cells.

6.3.1. Demonstrative simple example in 2D
Let us take a particular example, which is a generalization of the 1D demonstrative example from Section 5.1. In the two-

dimensional domain ½0;8� � ½0;8�, we have a structured quadrilateral mesh of 9� 9 equidistant nodes with cell-centered val-
ues of density and velocity given by the discretization of functions
qðx; yÞ ¼ xþ 10 for 0 6 x 6 8; uðx; yÞ ¼
ðx; yÞ for 0 6 x 6 4;
ð�x; yÞ for 4 < x 6 8:



ð6:5Þ
We see that density and the y-component of velocity are given by a smooth linear function, while in the linear function
defining the x-component of velocity there is a jump across the line x ¼ 4. Then we move the mesh and remap the values.
To make the example simple, we only move the nodes in x-direction. In particular, we shift all mesh nodes except those at
the left and right boundaries by dx ¼ �0:2, i.e. to the left as shown in Fig. 11.

We focus here only on one row of cells with centers at y ¼ 3:5, five of which are denoted by i; j; k; l; m in Fig. 11. The
detailed derivation of all constraints on C’s (defining the admissible sets) is presented in Appendix A, here we present only
shortly the final results. First as the density is linear there are no constraints on Cm coming from density bounds. As in the
case of 1D demonstrative example, which is very close to this 2D example, only on two interfaces, namely ðj; kÞ and ðk; lÞ
around the velocity discontinuity, the velocity bounds impose constraints on C’s. On the other interfaces we use
Cm ¼ Cl ¼ 1, i.e. high-order method, which does not violate any bounds. The constraints affecting the admissible sets to-
gether with the admissible sets and final solution for both ðj; kÞ and ðk; lÞ interfaces are plotted in Fig. 12. Some constraints
are satisfied but they are too far to be shown in Fig. 12.

Note, that if we would change the initial density and velocity to
qðx; yÞ ¼ xþ 10 for 0 6 x 6 8; uðx; yÞ ¼
ðx;0Þ for 0 6 x 6 4
ð�x;0Þ for 4 < x 6 8



ð6:6Þ
instead of (6.5), we would get exactly the 1D demonstrative example from Section 5.1, only generalized to the 2D mesh.

6.3.2. Cyclic remapping in 2D
To present results of our SFCR remapping in 2D we use the two different cyclic sequences of meshes from [22] on the unit

square domain ½0;1� � ½0;1�.









Table 7
Cyclic remapping of 2D Sedov analog on the sequence of smooth non-orthogonal meshes: convergence tables in density and velocity components for cyclic
remapping by low-order, high-order and SFCR methods.

Method Resolution L1 error Err. prev./curr. resol.

N kmax q ux uy q ux uy

Low-order 64 320 0.2870 0.4604 0.4604
128 640 0.2300 0.3247 0.3247 1.25 1.42 1.42
256 1280 0.1761 0.2257 0.2257 1.31 1.44 1.44

High-order 64 320 0.1800 0.3899 0.3899
128 640 0.1143 0.1592 0.1592 1.57 2.45 2.45
256 1280 0.0705 0.0947 0.0947 1.62 1.68 1.68

SFCR 64 320 0.1684 0.2387 0.2386
128 640 0.1054 0.1114 0.1114 1.6 2.14 2.14
256 1280 0.0642 0.0623 0.0623 1.64 1.79 1.79

R. Liska et al. / Journal of Computational Physics 229 (2010) 1467–1497 1491
The results for cyclic remapping of 2D shock on the sequence of tensor product meshes (6.7) are presented in Table 4 show-
ing the relative L1 errors of the final solution by low-order, high-order and SFCR methods at three mesh-pseudo-time reso-
lutions ðN; kmaxÞ ¼ ð64;320Þ; ð128;640Þ; ð256;1280Þ. The SFCR method is producing the smallest error while staying in
bounds which is documented in Fig. 13 resp. Fig. 14 showing density resp. y-component of the velocity at the lowest reso-
lution. The high-order method produces oscillations in both density and velocity on both sides of the shock and these oscil-
lations violate the local bounds (monotonicity) of the remapped function.

CPU times for cyclic remapping of 2D shock on the sequence of tensor product meshes are summarized in Table 5. SFCR
method needs about three times more CPU time than the high-order method. Note however again that these CPU times were
obtained by our experimental non-optimized implementation of these methods. They are presented here only to demon-
strate differences in complexity of the methods.

The results for cyclic remapping of 2D shock on the sequence of smooth non-orthogonal meshes (6.8) are presented in
Table 6 showing the relative L1 errors of the final solution by low-order, high-order and SFCR methods at three mesh-pseu-
do-time resolutions. SFCR method is producing the smallest error while staying in bounds which is documented in Fig. 15
resp. Fig. 16 showing density resp. y-component of the velocity. The high-order method produces oscillations in both density
Fig. 17. Cyclic remapping of 2D Sedov analog on the sequence of smooth non-orthogonal meshes with N ¼ 64; kmax ¼ 320: density by (a) low-order, (b)
high-order and (c) SFCR method; 13 contours 0,0.5, . . . ,5.5,6.
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and velocity on both sides of the shock and these oscillations violate the local bounds (monotonicity) of the remapped func-
tion. Curved shape of isolines showing the oscillations for the high-order method in Figs. 15(b) and 16(b) is caused by the
fact that the central point of the meshes ðx; yÞ ¼ ð0:5;0:5Þ is not moving during the mesh movement, see (6.8) with
n ¼ g ¼ 0:5.

6.3.2.2. Analog of 2D Sedov. The second test is defined by the functions centered at ðx0; y0Þ ¼ ð0:5;0:5Þ on the domain
½0;1� � ½0;1�
Fig. 18.
high-or
surface
qðx; yÞ ¼ 6 r
r0

� �8
for r < r0;

1 for r P r0;

8<
:

uðx; yÞ ¼
0:83ðx� x0; y� y0Þ for r < r0;

ð0;0Þ for r P r0;




where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ

2
q

; r0 ¼ 0:375, which is quite close to the scaled solution of cylindrical 2D Sedov problem [9]

(the case of cylindrical Sedov problem with initial conditions: constant density q0 ¼ 1, initial energy E0 ¼ 0:311357; c ¼ 1:4

at time t ¼ 1).
Cyclic remapping of 2D Sedov analog on the sequence of smooth non-orthogonal meshes with N ¼ 64; kmax ¼ 320: velocity by (a) low-order, (b)
der and (c) SFCR method; 11 contours 0,0.031, . . . ,0.31. The upper row is showing the contour plots of the norm of velocity, the middle row the
plot of the norm of velocity and the lower row the directional arrows of the velocity.
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The results for cyclic remapping of this 2D Sedov analog on the sequence of smooth non-orthogonal meshes (6.8) are
presented in Table 7 showing the relative L1 errors of the final solution by low-order, high-order and SFCR methods at
three mesh-pseudo-time resolutions. SFCR method is again producing the smallest error while staying in bounds which
is documented in Fig. 17 resp. Fig. 18 showing density resp. velocity at the lowest resolution. In the density contour plot
of high-order method in Fig. 17(b) one clearly sees the density oscillations outside the circular shock. However note also
the zero density contour in the center of the contour plot which demonstrates that the density is getting negative there
for the high-order method while it should be very small, but still positive as it is for the low-order and SFCR methods.
The situation is getting even worse for velocity. As can be seen in Fig. 18(b), velocity from the high-order method
around the center point ðx0; y0Þ ¼ ð0:5;0:5Þ has huge oscillations. The reason of these oscillations is negative density
in this region. When density is negative, then also masses of cells in this region become negative and the negative
masses are changing the direction of the velocity vector (see the arrows in the lower plot in Fig. 18(b)) computed from
remapped momentum and mass (2.12). The changed direction of the velocity introduces oscillations which are further
amplified by the high-order method during following remaps. Note however that this is a difficult problem as the den-
sity in the four central cells at the lowest resolution is of the order 10�12, the cell masses are even smaller and division
by a small number can cause big numerical errors.

7. Conclusions and future work

In this paper we have developed a new optimization-based synchronized flux-corrected remapping of mass/density and
momentum/velocity. This new method is intended to be used in arbitrary Lagrangian–Eulerian methods. The main new re-
sults are deriving local linear objective function and new sufficient conditions for bound preservation. We have shown that
in 1D our new method is superior in comparison with the method from [25]. On 1D and 2D examples we have demonstrated
the performance of a new method.

There are several interesting problems which we are planning to investigate in future paper(s). First of all, the results may
depend on the choice of low-order and high-order fluxes because it will affect the objective function. As it was mentioned in
[14, p. 224], one can consider limiting different components of the velocity, that is components related to main direction of
the flow. Also, as it is clear from results presented in [26], accuracy of advection can strongly depend on the choice of bounds.
In context of remapping this means that we need to take into account which old cells the new cell intersect. We also plan to
use iterative solution strategies [25,14], where compatible fluxes obtained in this paper will be used as low-order fluxes.
Next, in ALE methods we also need to remap internal energy. Internal energy is usually obtained as the difference of total
and kinetic energy (which is a quadratic function of the velocity). Bound preservation requirements for internal energy will
lead to quadratic constraints.
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Appendix A. Detailed description of demonstrative 2D example

A.1. Constraints from density bounds

Let us focus on five cells denoted in Fig. 11 by indices i; j; k; l and m. The bounds for density and mass are
Cell
 i
 j
 k
 l
 m
qmin
 10.5
 11.5
 12.5
 13.5
 14.5

qmax
 12.5
 13.5
 14.5
 15.5
 16.5

mmin
 10.5
 11.5
 12.5
 13.5
 14.5

mmax
 12.5
 13.5
 14.5
 15.5
 16.5
For simplicity, we moved the mesh nodes only in x-direction. Therefore there is no mass or momentum flux across the
logically horizontal faces and thus e.g. cell k only exchanges mass and momentum with cells j and l, etc. For the interfaces
between our cells of interest we have the following low-order, high-order and antidiffusive fluxes:
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Interfaces a; b
 i; j
 j; k
 k; l
 l;m
Fm;L
a;b ¼ �Fm;L

b;a

�2.3
 �2.5
 �2.7
 �2.9
Fm;H
a;b ¼ �Fm;H

b;a

�2.38
 �2.58
 �2.78
 �2.98
dFm
a;b ¼ �dFm

b;a
 �0.08
 �0.08
 �0.08
 �0.08
Because the values of mL; Q m; Pm etc. for cells i and m depend also on fluxes from cells left of i resp. right of m, we further
show only values for cells j; k and l, which are fully given by the fluxes shown in the table above. The formulas yield
Cell
 j
 k
 l
mold
 12.5
 13.5
 14.5
mL
 12.3
 13.3
 14.3
Qm;min
 0.8
 0.8
 0.8
Qm;max
 1.2
 1.2
 1.2

Pm;�
 0.08
 0.08
 0.08

Pm;þ
 0.08
 0.08
 0.08
Qm;min=Rm;�
 10
 10
 10
Qm;max=Rm;þ
 15
 15
 15

Cm;�
 1
 1
 1

Cm;þ
 1
 1
 1
and therefore at interface ðj; kÞ as well as ðk; lÞ the high-order mass flux does not need to be corrected due to velocity
constraints:
Cm;q
j;k ¼ Cm;q

k;j ¼ 1; Cm;q
k;l ¼ Cm;q

l;k ¼ 1:
Note that the values Cm;q defined in (3.16) and (3.17) are only density-imposed upper bounds for final Cm’s, which can be
further decreased by the velocity constraints.

A.2. Constraints from velocity bounds

Now let us consider the lower and upper bounds for velocity:
Cell
 i
 j
 k
 l
 m
umin
 (0.5,2.5)
 (1.5,2.5)
 (�4.5,2.5)
 (�5.5,2.5)
 (�6.5,2.5)

umax
 (2.5, 4.5)
 (3.5,4.5)
 (3.5,4.5)
 (3.5,4.5)
 (�4.5,4.5)
The nonzero fluxes are
Interfaces a; b
 i; j
 j; k
 k; l
 l; m
Fl;L
a;b ¼ �Fl;L

b;a

(�3.45,�8.05)
 (�6.25,�8.75)
 (�9.45,�9.45)
 (13.05,�10.15)
Fl;H
a;b ¼ �Fl;H

b;a

(�4.49,�8.33)
 (�7.45,�9.03)
 (�5.59,�9.73)
 (18.35,�10.43)
dFl
a;b ¼ �dFl

b;a

(�1.04,�0.28)
 (�1.20,�0.28)
 (3.86,�0.28)
 (5.30,�0.28)
where the high-order fluxes were computed by integration of piecewise linear approximation of momentum. (Because of the
simple setup and initial condition we have, the low-order momentum fluxes and all mass fluxes are exact so far.)

The ‘‘unlimited” terms in cells with respect to interfaces with their neighbors are
Cell a
 i
 j
 k
Neighb. b
 j
 i
 k
 j
 l
Wl;min
a;b
(�1.00,�0.08)
 ( 0.92,0.08)
 (�1.08,�0.08)
 ( 1.56,0.08)
 (3.50,�0.08)
Wl;max
a;b
(�0.84,0.08)
 (0.76,�0.08)
 (�0.92,0.08)
 ( 0.92,�0.08)
 (4.14, 0.08)



Cell a l m

Neighb. b k m l

Wl;min
a;b

(�3.42,0.08) ( 4.86,�0.08) (�4.78,0.08)

Wl;max
a;b

(�4.14,�0.08) ( 5.58,0.08) (�4.94,�0.08)
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which gives for cells j; k and l:
Cell
 j
 k
 l
lold
 (31.25,43.75)
 (47.25,47.25)
 (�65.25,50.75)
lL
 (28.45,43.05)
 (44.05,46.55)
 (�42.75,50.05)
Ql;min
 (10.0,12.3)
 (103.9,13.3)
 (35.9,14.3)
Ql;max
 (14.6,12.3)
 (2.5,13.3)
 (92.8,14.3)
Pl;min;�
 (1.08,0.08)
 (0,0.08)
 (3.42,0.08)
Pl;max;þ
 (0.76,0.08)
 (5.06,0.08)
 (5.58,0.08)
Dl;min;�
 (9.259,153.75)
 (‘‘1” ,166.25)
 (10.497,178.75)
Dl;max;þ
 (19.211,153.75)
 (0.49407,166.25)
 (16.631,178.75)
Now we must construct the constraints according to formulas (6.3a) and (6.3b). For interface ðj; kÞ, after insertion in the
formulas
Cl
j;kdFl

j;k � umin
j Cm

j;kdFm
j;k

� �
f
P ðDl;min;�

j Þf min Wl;min
j;k

� �
f
; 0

� 	
;

Cl
j;kdFl

j;k � umax
j Cm

j;kdFm
j;k

� �
f
6 ðDl;max;þ

j Þfmax Wl;max
j;k

� �
f
;0

� 	
we have for the x-component of velocity
�1:20Cl
j;k þ 0:12Cm

j;k P �10:0; �1:20Cl
j;k þ 0:28Cm

j;k 6 0
and for the y-component of velocity
�0:28Cl
j;k þ 0:20Cm

j;k P �12:3; �0:28Cl
j;k þ 0:36Cm

j;k 6 12:3:
Looking at the interface from cell k, i.e. switching k and i in the formulas and using the fact that Cm
k;j ¼ Cm

j;k and Cl
k;j ¼ Cl

j;k, we
get for the x-component of velocity
1:20Cl
j;k þ 0:36Cm

j;k P 0; 1:20Cl
j;k � 0:28Cm

j;k 6 0:45454
and for the y-component of velocity
0:28Cl
j;k � 0:20 Cm

j;k P 0; 0:28Cl
j;k � 0:36Cm

j;k 6 0:
For interface ðk; lÞ, looking from cell k, we have for the x-component of velocity
3:86Cl
k;l � 0:36Cm

k;l P 0; 3:86Cl
k;l þ 0:28Cm

k;l 6 2:04545
and for the y-component of velocity
�0:28Cl
k;l þ 0:20Cm

k;l P �13:3; �0:28Cl
k;l þ 0:36Cm

k;l 6 13:3;
while looking from cell l and using Cm
l;k ¼ Cm

k;l and Cl
l;k ¼ Cl

k;l, we get for the x-component of velocity
�3:86Cl
k;l þ 0:44Cm

k;l P �35:9; �3:86Cl
k;l � 0:28Cm

k;l 6 0
and for the y-component of velocity
0:28Cl
k;l � 0:20 Cm

k;l P 0; 0:28Cl
k;l � 0:36 Cm

k;l 6 0:
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A.3. Complete set of constraints

For interface ðj; kÞ we have the constraints
0 6 Cm
j;k 6 1; 0 6 Cl

j;k 6 1 ðA:1Þ
(since density bounds imposed no constraints – recall that all Cm;q ¼ 1) and further
Cl
j;k 6 0:1Cm

j;k þ 8:3333; Cl
j;k P 0:2333 Cm

j;k; ðA:2aÞ
Cl

j;k P �0:3 Cm
j;k; Cl

j;k 6 0:2333Cm
j;k þ 0:3788; ðA:2bÞ

Cl
j;k 6 0:7143Cm

j;k þ 43:9286; Cl
j;k P 1:2857Cm

j;k � 43:9286; ðA:2cÞ
Cl

j;k P 0:7143Cm
j;k; Cl

j;k 6 1:2857Cm
j;k; ðA:2dÞ
interface of which is shown in the left part of Fig. 12. The maximizing pair is
Cm
k;j ¼ Cm

j;k ¼ 0:7876; Cl
k;j ¼ Cl

j;k ¼ 0:5626:
For interface ðk; lÞ we have the constraints
0 6 Cm
k;l 6 1; 0 6 Cl

k;l 6 1 ðA:3Þ
(since density bounds imposed no constraints) and further
Cl
k;l P 0:09326Cm

k;l; Cl
k;l 6 �0:07254Cm

k;l þ 0:5299; ðA:4aÞ
Cl

k;l 6 0:1140 Cm
k;l þ 9:3005; Cl

k;l P �0:07254 Cm
k;l; ðA:4bÞ

Cl
k;l 6 0:7143Cm

k;l þ 47:5; Cl
k;l P 1:2857Cm

k;l � 47:5; ðA:4cÞ
Cl

k;l P 0:7143 Cm
k;l; Cl

k;l 6 1:2857Cm
k;l; ðA:4dÞ
which are shown in the right portion of Fig. 12 and give the result
Cm
k;l ¼ Cm

l;k ¼ 0:6735; Cl
k;l ¼ Cl

l;k ¼ 0:4810:
Let us remark, that constraints (A.2c) at left and (A.4c) at right are satisfied but are not visible in the plots because they are
too far from the origin ðCm;ClÞ ¼ ð0;0Þ.
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